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Abstract

Computer vision systems employ a sequence of image understanding vision algorithms in which the output of
an algorithm is the input of the next algorithm in the sequence. Vision systems consist of algorithms that exhibit
varying characteristics, and therefore, require different data decomposition and efficient load balancing techniques
for parallel implementation. However, since the input data of a task is produced as the output data of the previous
task, this information can be exploited to perform knowledge based data decomposition and load balancing. This

paper presents several techniques to perform static and dynamic load balancing techniques for vision systems. These
techniques are novel in the sense that they capture the computational requirements of a task by examining the data
when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different
systems are either same, or have similar computational characteristics. These techniques axe evaluated by applying

them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor
system. The motion estimation system consists of the following steps: 1) extraction of features, 2) stereo match of
images in one time instant, 3) time match of images from different time instants, 4) stereo match to compute final
unambiguous points and, 5) computation of motion parameters. It is shown that the performance gains when these
data decomposition and load balancing techniques are used are significant and the overhead of using these tech-
niques is minimal.
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NatiomdS¢ica¢¢FoundationGnmtIR187-05400.
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1. Introduction

Computer vision tasks employ a tm3ad range of algorithms. In vision system many algorithms with different

characteristics and computational requirements are used in a sequence where output of one algorithm becomes the

input of the next algorithm in the sequence [1,2]. An example of such a system is a motion estimation systems. In

such a system, a sequence of images of a scene ate used to compute the motion parameters of a moving object in the

scene. Figure 1 shows the computational flow for a motion estimation system in which stereo images (L/m and R/m)

at each time frame are used as the input to the system. Briefly, the involved tasks (or algorithms) in this system are

as follows. The first algorithm is computation of zero crossings of the images (edge detection (Lzc and Rzc)). The

zexo crossings are used as feature points for both stereo and time matching. The stereo match algorithm provides

points to compute 3-D information about the object in the scene. Using these matched points (Lsm and Rsm), the

c_responding points in the image in the next time frame (Ltm) are located and this task is performed by time match

algorithm. Again, stereo match is used to obtain the corresponding 3-D points in the next image frame. These two

sets of points Ixovida information to compute the motion parameters. The above process is repeated for each new

set of input image frame.

This paper presents techniques to perform efficient data decomposition and load balancing for vision systems

for medium to large grain parallelism. Two important charactexistics of these techniques are that they are general

enough to apply to many vision systems, and that they use statistics and knowledge from execution of a task to

Rim(t/+l_ ZC __I)SM TM SM MP

D

ZC: Convolution and Zero Crossings SM : Stereo Match

TM: Time Match MP: Motion Parameter Computation

Figure 1 : Computation Flow for Motion Estimation

Put
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perform data decomposition and load balancing for the next task. For example, in the motion estimation system

sufficient knowledge can be obtained about the output data from the zero crossing step to perform data decomposi-

tion and load balancing for the stereo matching step. The advantages of such schemes are as follows. First, these

techniques use characteristics of tasks and data, and therefore, work well no matter how data changes. Second,

many vision systems consist of such tasks and exhibit the above described computation flow, and therefore, these

techniques can be used in any system (e.g., object recognition, optical flow etc.) [2].

The performance of the proposed techniques is evaluated by using a parallel implementation of the motion

estimation system algorithms on a hypercube multiprocessorsystem. The resultsshow that using uniform partition-

ing, without considering the computations involved, parallel processing does not provide significant performance

improvements over sequential processing. Furthermore, by applying the proposed data decomposition and load

balancing techniques significant performance gains (as much as 6 fold) can be obtained over uniform partitioning.

This paper is organized as follows. In Section 2 we provide a brief description of each step in the motion esti-

marion system. For a detailed description, the reader is referred to [3,4]. These algorithms will provide insight into

the involved computations in the motion estimation system. Section 3 describes the proposed load balancing and

data decomposition techniques. In section 4 we present a parallel implementation of these algorithms in an

integrated environment on a hypercube multiprocessor, and discuss the performance results for each of these algo-

rithms and data decomposition and load balancing schemes. Some of these techniques have been applied to other

integrated vision systems and have been shown to work well [2, 5]. Finally, concluding remarks are presented.

2. Steps in the Motion Estimation System

The motion estimation system consists of the following steps: I) extraction of features, 2) stereo match of

images in one time instant, 3) time match of images from different time instants, 4) stereo match to compute final

unambiguous points and, 5) computation of motion parameters. We will not discuss, the last process, calculation of

motion parameters, but a discussion on how to compute them can be found in [6]. The matching algorithms use

stereo image pairs, and the algorithms are designedto find point correspondences between two consecutive time

instants,i.e., ti-t and ti. From the point correspondences, we can estimatethe motion parameters. Typical stereo

imagepairs at two consecutive time instants (t7 and t8) used in this paper are shownin Figure 2, which are outdoor

scenesof truck at different locations. The imagesarc segment out from larger imagesof size 1024×1024. The

imaging setup used in taking the images is parallel axis method. The feature points used in the matching process are
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edge points which are considered as the more reliable features obtained from an image. In order to save consider-

able computation time, the matching process in done by employing non-iterative procedures with the assumption of

limited displacement (or disparity) between frames. We apply the matching algorithm on two stereo image pairs at

two consecutive time instants t 7 and t8. The following is a brief description for each major step of the motion esti-

mation system.

2.1. Feature Points

The feature points used in this algocithm are zero crossing points of an image. We use the method suggested

by Huenas and Medioni in [7] to extract the zero crossings of an image. In order to eliminate non-significant zero

crossing points and maintain enough details, we threshold the zero crossing image based on the intensity gradient at

each zero crossing point. Figure 3 depicts one of the thresholded zero crossing images, 17. We associate each zero

crossing point with one the sixteen possible zero c_ssing patterns as suggested and used by Kirn and Aggarwal [8].

The patterns are not used directly; instead, we assign each pattern a value according to its local connectivity. These

pattern values are used in the matching process.

2.2. Matching

Once zero crossings are extracted in all the involved images, the matching process is applied to find point

correspondences among the images (two stereo image pairs at two consecutive time instants). The evidences used

in this process to obtain matched point pairs are the normalized correlation coefficient, and the zero crossing pattern

values. Furthermore, in order to limit the search space, the assumption of limited displacement or disparity between

frames is exploited. The matching process consists of six steps as follows:

I) Perform stereo (from left to right) matching in the ti-1 stereo image pair.

2) Obtain unambiguous matched point pairs by eliminating multiple matches.

3)

4)

Perform time matching between the unambiguous matched points in the left ti_ 1 image and the

feature points of the left ti image.

Obtain unambiguous matched point pairs from the time matched points by eliminating multiple

time matches.
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5) Perform stereo matching between the unambiguous matched points (obtained in step (4)) in the left

t i image and the feature points of the fight t i image.

6) Obtain unambiguous matched point pairs from the results of ti stereo matching by eliminating mul-

tiple matches.

The results of the above steps are two sets of unambiguous stereo matched point pairs at time instant ti-1 and

ti. These two sets are related through steps (3) and (4), the matching over time; therefore, we can pick out all the

unambiguous matched points that correspond to each other among the two stereo image pairs at time instants ti_ I

and ti. The matching algorithm was applied to the images shown in Figure 2. The final results are depicted in Fig-

use 4, which shows that we have enough point correspondences for the motion estimation.

3. Data Decomposition and Load Balancing Techniques for Parallel Implementation

In a multiprocessor system the simplest method to implement a task in parallel is to decompose the data and

equally and uniformly among the processors. In a completely deterministic computation in which the computation is

independent of the input data such schemes perform well, and normally, the processing time is comparable on all

the processors. That is, efficient utilization and load balancing can be obtained. For example, regular algorithms

such as convolutions, filtering or FFT exhibit such properties. The amount of computation to obtain each output

point is the same across all input data. Therefore, uniform decomposition of data results in load balanced implemen-

tat.ion.

Most other algorithms do not exhibit a regular sWacture, and the involved computation is normally data

dependent. Furthermore, the computation is not uniformly distributed across the input domain. In such cases, a sim-

ple decomposition of data does not provide efficient mapping, and results in poor utilization and low speedups.

Also, the performance cannot be predicted for a given number of processors, and a given data size, because the

computation varies as type of data and its distribution varies. For example, in the stereo match algorithm, the com-

putation is m(_'e where feature points are dense, and is comparatively small where number of features is small and

sparsely distributed (Figure 3).

In a vision system, it is important to efficiently allocate resources and perform load balancing at each step to

obtain any significant performance gains overall. An important characteristic of such systems is that the input data

of a task is the output of the previous task. Therefore, while computing the output in the previous task enough
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(a) Left and right images at time instant t 7

Co) Left and right images at time instant t 8
Figure 2 : Images set of t7 and t8
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(a):Attimeinstantt7

(a) : At time instant t 8

Figure 4 : Unambiguous matched points of Figure 2
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knowledge about the data can be obtained to perform efficient scheduling and load balancing.

Consider a parallel implementation of a task on n processor parallel machine. Let Ti (1<_ _.n) denote the

computation time at processor node i. Then the overall computation time for the task is given by

Tnu_x = max{Tl,...,T,t} (1)

The total wasted time (or idle time) Tw is given by

i=n

Tw = Z (Tmax - Ti) (2)
i=1

If Tma x = T i for all i, 1fa'.f,n, then the task will be completely load balanced. Another measure of imbalance is

given by the variation ratio V,

Tmax

V = Train Train = rain[T1 ..... T,,) (3)

The goal in performing load balancing is to minimize Tw, or move V as close to 1 as possible. In the best case,

Tw=OorV= l.

If Tseq is the time to execute the same task on a sequential machine then the speedup is given by

T, q
Sp = Tmax

(4)

Therefore, by minimizing Tw, the achievable speedup can be maximized. In the following we discuss such

techniques, and in the next section we present the performance results for a parallel implementation of algorithms in

the motion estimation system.

3.1.1. Uniform Partitioning

Data decomposition using uniform partitioning perfo_ns well as a load balancing strategy for input data

independent tasks, because equally dividing the data distributes the computation equally among processors. If total

input data size is D then total computation time to execute a task is T = kxD, where k is determined by the com-

putation at each input data point. For example, in convolution of an image with m xrn kernel, k = 2xm 2 floating

point operations. Hence, for an n node multiprocessor, the data decomposition methods to balance the computation

is to make the granule size to

D
di "- -- (5)

n
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For data independent algorithms, such a partitioning guarantees equal distribution of computation among pro-

cessors. Therefore, if communication time can be minimized, then optimal performance can be obtained on a given

multiprocessor.

3.1.2. Static

When computation is not uniformly distributed across the input domain, and is data dependent, uniform parti-

tioning does not work well for load balancing. Normally, computation depends on significant data elements in a par-

tition. Many vision algorithms exhibit this behavior. For example, in stereo match, hough transform etc., the com-

putation is proportional to the number of features (edges) or significant pixels in a granule rather than on the granule

size. Therefore, equal size granules do not guarantee load balanced partitioning because of the data dependent

nature of the computation. In many such algorithms, the computation time for a granule (i), Ti, is proportional to a

certain extent on the granule size (fixed overhead to process a granule), and to the number of significant data in a

granule. That is,

Ti = Axdi +Bx_ (6)

where, d i is the granule size, )_ is a measure of significant data in granule (i), and A and B are arbiwary constants

which depend on the algorithm. The objective is to divide the computation among processors such that each proces-

mr receives equal measure of computation. One way to assign a granule to a processor is to compute the total

measure of computation and partition is as follows:

i=$
EAxdi + B×fi
i=i (7)

Ti=
?l

where, g is the total number of granules in the input domain (Note that the number of granules for the current task is

n for an n processor system).

For example, consider computing hough transform of an edge image to detect line segments. If there exists a line

whose normal distance from the origin is r, the normal makes an angle 0 with the x-axis then if a point (x,y) lies on

that line, the following equation is satisfied.

r = xcos 0 + ysin 0

r and 0 are quantized for desired accuracy and then for each significant pixel (where there is an edge), r is

computed for all quantized 0 values. If two partitions of equal size contain different number of edge pixels, then the
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amount of computation will be different for the two partitions despite them being equal in size. In fact, the computa-

tion is directly proportional to the number of edge pixels in a partition. A way to perform static load balancing will

be to decompose the input data such that each partition contains equal number of edge pixels. The computation to

recognize this pardoning can be performed in the task in which edges are detected by keeping a count of the number

of edges detected by a processor. Once a task is completed, the data can be reorganized such that the number of

edges with each processor is in the interval ( Za - 8, _Za + 8), where Z a is the total number of edges detected in
n n

image, and 8 is determined by the minimum granule size from fixed overhead considerations.

3.1.3. Weighted Static

When the computation in a granule not only depends on number of significant data points in the input domain,

but it also depends on their spatial relationships, then data distribution needs to be taken into account as a measure

of load to perform load balancing. For example, in stereo match or time match, not only does the computation

depend on the number of zero crossings, but it also depends on their spatial distribution. If the zero crossings are

densely spaced, then the computation will be more than that if the same number of zero crossings are sparsely distri-

buted. The reason is that if the zero crossings are densely packed, then more number of zero crossings need to be

matched with each corresponding zero crossing in the other image, whereas less number of zero crossings need to

be matched if they are sparsely distributed. Hence, the computation also depends on the spatial density (such as

features/row if one dimensional matching is performed). That is,

Ti = A xdi + B ×wixdi (8)

where, wi is the feature dependent spatial density. For example, if the minimum granule size is a row of the input

data then wi = re, where r i is the number of features in row i, and [3 is a parameter, 0<[3<1. _ =13 means that

the computation is independent of how the features are distributed within a row. Therefore, to divide the computa-

tion equally among n processors, the following heuristic can be used.

i=R

:g Axdi + Bxwixai
i=0 (9)

Ti=
II

where, R is the number of rows in the image. Note that the above heuristics approximate the load and do not exactly

divide the computation among processors. However, in the next section we will show that these schemes perform

well.
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3.1.4. Dynamic

Above three methods use the knowledge about the data when it is produced to perform load balancing for the

next task. However, once decomposition is done, then the data is not reshuffled. Therefore, we consider the above

methods as knowledged based static load balancing scheanes. In the dynamic scheme, the data is decomposed into

finer granules such that the number of tasks, (that is number of independent granules) M, is much larger than the

/

number of processors.

At execution time the processors are assigned these tasks dynamically by a designated scheduler from a task

queue containing these tasks. Processors am assigned new tasks as they finish their previously assigned tasks, if

there are more tasks left to be assigned. However, the knowledge obtained from the previous step can be used again

to anticipate the completion of a task, in order to assign a new task to a processor. That is, the task assignment can

be pipelined, thereby reducing the overhead of dynamic assignment.

The following procedure illustrates the dynamic assignment of tasks onto the processor. The pseudo code

essentially illustrates what the scheduler does in order to perform dynamic load balancing. The number of tasks

(max_tasks) are determined during the execution of the preceding step in the system, and the task_queue contains

all the tasks including the computational information associated with each task. Initially, the scheduler assigns few

tasks to each processor. The number of tasks to be assigned initially is a parameter (pipeline._no). If this parameter

is I, it implies that there is no anticipatory scheduling. In other words, a processor is assinged a new task only when

it finishes the task it is currently executing. A task is assigned to a processor only if the task contains significant

computation. For example, in stereo match, if a task's data does not contain any zero crossings, then the task can be

discarded because it is not going to produce any useful information anyway. In a blind scheme, where little is

known about a task, the task will be assigned, which is an overhead, and can be avoided by using the knowledge

obtained from the previous steps. Whenever a processor Pi completes the current task, it sends a complmsg to the

scheduler which assigns Pi a new task if the taskqueue is not empty. Once the task_.queue becomes empty, the

scheduler sends a term_msg (terminate message) to all the processors. Upon receiving a term msg from the

scheduler, processors complete the remaining tasks in their ta_k queues, and sends a term msg to the scheduler, ter-

minating the computation. Note that by using the pipe_line_no, anticipatory dynamic scheduling can be performed,

and a processor need not be idle when a new task is being assigned. By using this parameter, the amount of initial

static assignment, and dynamic assignment can be concolled.
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2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

Dynamic Schedulingof Tasks
/*Initial Assignment*/

curt task = O;
for j = 1 to j <= pipe_line_no do

foriffi 1 to i ffinum_proc do
if comp(task_queue(cun'_task)) > 0

schedule curr_task at proc. Pi;
curt_task fficurt_task+ 1;

else

end_if

cm'r_taskffi curt_task+1;
go to4.

end_for
end_for

/*Scheduling*/

doneffi false;k = num_proc;
while not done do

wait for msg from a processor;,
receive msg;
if ( msg = compl_msg )

P i = sender processor;,
if curt_task< max_tasks

if comp(task_queue(curr_task)) > 0
schedule curt_task at proc. Pi;
cuff_task = curt_task+ 1;

else
curt_task = curt_task+l;
go to 19.

else
send term_msg to P i.

else if ( msg = term_msg)
k=k- 1;
if(k<=O)

done = true.

4. Parallel Implementation and Performance Evaluation

This section presents a parallel implementation of the algorithms that are part of motion estimation system

and describes the performance of the algorithms and load balancing strategies.

4.1. Hypercube Muitiprocessor

A hypercube mulfiprocessof system of size P has P processors, where P is an integral power of 2. P processors

are indexed by the integers 0,...,P-I and the following criteria is satisfied. If the processor numbers are represented

by log 2 (P) bits then two processors are connected by communication links if and only if their bit representation
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differs by exactly one bit. Therefore, each processor is connected to log2(P ) processors with direct communication

links. Diameter of the hypereube of size P is log2(P) (diameter is the maximum distance between any two nodes).

We used Intel ipsc/'2 hypereube multiprocessor consisting of 16 nodes. Each node consists of an Intel 80386 proces-

sor, Intel 80387 co-processor, 4 megabyte memory, and a communication module.

4.2. Feature Extraction

Features used for stereo match algorithms are the zero crossings of the convolution of the image with Lapla-

clan. Zero crossing computation involves 2-D convolution and extraction of zero crossings from the convolved

image. Since convolution is a data independent algorithm uniform partitioning is sufficient to evenly distribute the

computation. The mapping is a division of NxN image onto P processors. Each processor computes the zero cross-

ings of share of N21p pixeis. Data division onto the processors is done along the rows. This mapping reduces com-

munication to only in one direction. The reason is that 2-D convolution can be broken into two 1-D convolution [7].

This not only reduces the computation from W 2 sum of products operations per pixel to 2×W sum of product

operations per pixel (W is the convolution mask window size), but also reduces the communication requirements in

a parallel implementation if the data partitioning is done along the rows. There is no need for communication when

convolution is performed along the rows.

Table 1 shows the performance results for the above implementation for an image of size 256×256 and con-

volution window of size 20×20. First column shows the number of processors in the cube(P). Second column

represents the total processing time (tproc) for convolution. Column 3 shows the number of bytes communicated by

a processor to the neighboring processor, and column 4 shows the corresponding communication time which is

small compared to the computationtime. The seconc[half of the table shows the computation time for extracting

zero crossings from the convolved image. Corresponding speedups are also shown.

It can be observed that almost linear speedup is obtained for convolution. Two factors which contribute

toward this result are that communication overhead is relatively small, and communication is constant as the number

of processors increases. However, the speedup obtained in the elapsed time, which includes the program and data

load time also, is sub-linear due to the following reason. The hypercube multiprocessor's host does not have a

broadcast capability, and therefore, the overhead of loading the program increases linearly with the number of pro-

cessors. However, data load time increment with the increase in the number of processors is comparatively small

because amount of data to be loaded to one processor decreases as the number of processors increases. The only
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Table 1 : Performance for feature Extraction (Zero Crossings)

Computation for Convolution and Zero Crossings
Convolution Window Size = 20x20

No. Prec.

15

I
2
4
8

16

Cony.

Comp.
Time(see.)

109.0
54.76
27.51
13.88
7.07

Collv.

Comm.

ems
0

2816
5632
5632
5632

Couv.

Comm.

Time(ms.)
0

13
36
36
36

Conv.

Total

Time_see._
109.0
54.78
27.55
13.92
7.11

Conv.

Speed Up
1
1.98
3.95
7.83

15.33

ZC

Comp.
Time(see.)

6.47
3.23
1.66
0.85
0.42

ZC
Speed Up

1
1.99
3.89
7.60

15.25

Feature Extraction Performance (Ela

No. Proc. Elapsed

I
2
4
8

16

Time(sec.)
116.2
58.8
30.1
16.1
9.6

?sed Time)
Speed up

1
1.97
3.86
7.22

12.1

increment in data load time results from the number of communication setups from the host to the node processors,

which increases linearly with the number of processors.

4.3. Matching Features

This task involves matching features in stereo pair of images. Since the imaging setup uses the parallel axis

method, the epipolar constraint is used to limit the search space for matching to one-dimension which is in the hor-

izontal direction. Thus data partioning along the rows for parallel implementation results in no communication

between node processors as long as each partition contains an integral number of rows.

The computation involved in stereo matching algorithm is data dependent. The computation varies across the

image because it depends on the number of zero crossings, distribution of zero crossing across the image, and distri-

bution of zero crossings along the epipolar lines. Therefore, partioning the data uniformly among the processors (i.e.

assign each processor equal number of rows) may not yield expected speedups and processor utilization. A proces-

sor which has very few zero crossings, and sparsely distributed zero crossings will be under utilized, whereas a pro-

cessor with a large number of zero crossings, and densely distributed zero crossings will become a bottleneck.

We used uniform partitioning, static load balancing, weighted static and dynamic load balancing schemes to

decompose the computation on the multiprocessor. Static load balancing can be achieved by keeping a count of the

zero crossings with each processor when the previous task (feature extraction) is executed. At the completion of the
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task, the data is reorganized using this information, and using the techniques described in the previous section.

Figure 5 shows the distribution of the computation times for 8 processor case. The X-axis shows the proces-

sor number, and the Y-axis shows the computation time for each scheme. As we can observe, uniform partitioning

does not perform well at all because the variation in computation time is tremendous, and therefore, performance

gains are minimal. The static load balancing scheme (shown as dashed bars) performs much better than uniform par-

titioning, hut variation in computation times is still significant because the computation also depends on the distribu-

tion of zero crossings. The weighted static scheme performs better than static, and further reduces the variation in

computation times. Note that these schemes only measure the load approximately, and therefore, will not divide the

computation exactly uniformly. Furthermore, minimum granularity is a row boundary in order to avoid communica-

tion between processors. Finally, for 8 processor case, dynamic scheme performs the best. Table 2 summarizes the

distribution for the 8 processor case. The Table shows the computation time, variation ratio, and improvement ratio

for each processor under all four methods. Table 2 summarizes the distribution for the 8 processor case. The table
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Figure 5 : Distribution of Computation Times for Stereo Match (P=8)
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shows the computation time for each processor for all four methods. For example, the variation ratio is 44.25 for

uniform partitioning, is 2.71 for static load balancing, is 1.50 for weighted static, and is 1.09 for dynamic load

balancing. Improvement ratio is the ratio of speedup obtained with load balancing to that of uniform partitioning.

The computation times shown include all the overhead of load balancing schemea. Figure 6 shows the speedup

graph for varying size of multiprocessor from 1 processor to 16. We observe that uniform partitioning does not pro-

vide any significant gains in speedup as the number of processors increases. Dynamic scheme performs the best

among all the schemes, and the two static scheme perform comparably with the dynamic scheme. We believe that as

the number of processors is increased, the two static schemes will move even closer to dynamic scheme, or even

perform better than the dynamic scheme, because for a larger multiprocessors, the overhead of dynamic scheme will

be greater.

4.4. Time Match

The computation in time match algorithm is similar to that in stereo match except the search space is two-

dimensional, and the input to the algorithm is stereo match output. Other difference is that the number of significant

points in the input data is much smaller than that in stereo match, because a great deal of input points get eliminated

in stereo match. Table 3 shows the distribution of the computation times for the 16 processor case. We only present

uniform partitioning and static load balancing cases. The most important observation is that uniform partitioning

Table 2 : Distribution of Computation Times for Stereo Match

Computation Time Distribution for Stereo Match (P---8)

No.

0
1
2
3
4
5
6
7

Max.
Min.

Variation
ratio

Improvement
ratio

Uniform

Partitioning
Time (ms.)

364
164
878

7258
6827
5207
762
312

7258

164

Static

Time (ms.)
1402
3333
3066
3327
3371
3269
3063
1243

3371
1243

Static

Weighted

Time (ms.)
2439
26O6
2219
2277
2798
3328
2864
3223

I

3328
2219

Dynamic

Time(ms.)
2890
2786
2980
2967
2818
2913
2803
3051

3051
2786

44.25 2.71 1.50 1.09

1 2.15 2.19 2.38
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Figure 6 : Speedups for Stereo Match Computation

performs worse than that in the case of stereo match, and static lead balancing performs better.

The Table shows how the measure of computation (number of zero crossings left from stereo match step) is

divided among the processors in the two cases. It is clear that the number of zero crossings are very evenly distri-

buted (within the minimum granule of one row constrain0 in the static case, whereas they are lumped with a few

processors in the uniform partitioning case. Figure 7 shows the speedup graphs for the two schemes for a range of

multiprocessor size. The speedup gains for the load balanced case is very significant over the uniform partitioning

case. We computed the overhead of performing knowledge based static load balancing, and the overhead was 3 ms.,

which is negligible compared to the computation time, and the performance gains are significant.

4.5. Second Stereo Match

This step involves stereo match computation for features from images at time instant fi+l after time point

correspondence is established between images at lime t i and ti+ 1. The matching is similar to that in first stereo

match except that it need to be done only at those points at which time correspondence has already been established.
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Table 3 : Distribution of Computation Time for Time Match

Computation for Time Match ( Proc. = 16)

Prec. Uniform Partitioning With _ad Balancing
No.

Matching Total No. Matching Total
(See.) (See.) Zcs (See.) (Sec.)

_3 3 9.35 I0.00

1
2
3
4
5
6

7
8
9

10

11
12
13
14
15

0.14 0.22

0.14
0.13
0.13
0.13
3.72

13.56
5.20

26.76
45.97
73.93

27.32
O.42
0.22
0.53
0.10

2
0
0
0

21

55
20
93

182
259

121
3
1
4
0

12.38 12.55

13.12 13.21

14.23 14.27

I1.88 I1.91

10.93 10.95

12.82 12.85

12.16 12.19

11.41 11:$4
10.63 10.65

13.89 13.91

13.69 13.71

15.07 15.09

15.70 15.72

14.36 14.39

5.21 5.68

0.03

0.O2
0.02
0.02
3.61

13.45

5.09
26.65
45.85
73.82

27.20
0_31
0.11
O.42
0.08

Max.

time(see.)
Speed
up

MIa. Variation

time(see.) ratio

0.10 738

5.68 2.76

Improvement
ratio

73.82 2.69

Balanced 15.72 12.63 4.7

No_

Zcs

47
50

53
43
45
44
53

51
45
40
5O

44
43
56
56
43
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Figure 7 : Speedup for Time Match

Consequently, the number of features to be matched are much less than that in the first computation, and hence, the

importance of load balancing is further increased. Figure 8 depicts the distribution of computation times for the

second stereo match step. The three load balancing algorithms used in this case are Uniform Partitioning, Static and

Dynamic. We observe from the Figu_ that uniform partitioning does not perform well compared to the other two

schemes. The variation in computation tim_ is significant, and the static and dynamic schemes perform comparably.

Figure 9 presents the speedups f_ the same algorithm for various multiprocessor sizes. The Figure shows that

the gains from these load balancing schemes are very significant over uniform partitioning. One important observa-

tion can be made by comparing results in Figure 6 and 9. Note that the performance of uniform partitioning in the

second stereo match is much worse than that in the first stereo match. For example, for 16 processor case, the

speedup in the first case is 5.55, whereas for the same multiprocessor size speedup is only approximately 2.3 for the

second stereo match. Therefore, as the computation progresses in an integrated environment, the gains of these load

balancing schemes become increasingly significant.
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4.6. Summary of Results

In summary, the following important observations can be made from the results presented in this section.

First, the improvement in performance (such as utilization and speedup) itself increases using the load balancing

schemes as the number of processors increases. Therefore, performance gains are expected to be higher for larger

multiprocessors. Second, in an integrated environment, the overheads of such methods are small because measure of

load can be computed at run time as a bi-product of the current task. Finally, though we showed the performance

results of the implementation on the hH3ereube multiprocessor, these methods can be applied when algorithms are

mapped on any medium to large grain multiprocessor system, because these techniques are independent of the

underlying multiprocessor architecture.

Consider the overall performance gains for the entire system. As the computation progresses from one step to

the next, uniform partitioning performs worse because the data points reduce, but the computation at each point

increases. Hence, the gains of using parallel processing are minimal. However, the load balancing techniques recog-

nize the data distribution at each step, and the data is decomposed using the distribution. Therefore, performance
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gains are expected to improve as the computation progresses in an integrated environment. For example, consider

zero crossing, stereo match, time match, and second stereo match steps. In zero crossing computation, uniform par-

titioning performs well and load is balanced. Hence, the improvement ratio is 1. For stereo match the improvement

of static over uniform partitioning is 2.15 for 8 processor case, and is 2.22 for 16 processor case. Similarly, for time

match step, the improvement of static load balancing for 8 processor case is 3.38, and for 16 processor case, it is 4.2.

Therefore, the improvement in performance itself increases as the number of processors increases as well as when

the computation progresses in from one step to the next in a vision system.

5. Concluding Remarks

In this paper we presented techniques to perform efficient data decomposition and load balancing for vision

systems, for medium to large grain parallelism. Two important characteristics of these techniques are that they are

general enough to apply to any such integrated system, and that they use statistics and knowledge from the execu-

tion of a task to perform data decomposition and load balancing for the next task in the system. Knowledge from

each step is used to perform load balancing in the next step. The advantages of such schemes are as follows. First,

these techniques use characteristics of the tasks and the data, and therefore, work well no matter how the data

changes. Secondly, many vision systems consist of such tasks and exhibit the above described computation flow,

and therefore, these techniques can be used in any system.

Finally, the performance of the proposed techniques was evaluated by using a parallel implementation of the

motion estimation system algorithms on a hypercube multiprocessor system. The results show that using uniform

partitioning without considering the computations involved, parallel processing does not provide significant perfor-

mance improvements over sequential processing. Furthermore, by applying the proposed data decomposition and

load balancing techniques significant performance gains (as much as 6 fold) can be obtained over uniform partition-

ing.



Alok Choudhary 24

REFERENCES

[1] C. Weems, A. Hanson, E. Riseman, and A. Rosenfeld, "An integrated image understanding benchmark:
recognition of a 2 1/2 D mobile," in International Conference on Computer Vision and Pattern Recognition,
Ann Arbor, MI, June 1988.

[2] Alok N. Choudhary, "Parallel architectures and parallel algorithms for integrated vision systems," in Ph.D.
Thesis, University of Illinois, Urbana-Champaign, Agust 1989.

[3] Mun IC Leung and Thomas S. Huang, "Point matching in a time sequence of stereo image pairs," in Tech.
Rep., CSL, University of lllinois, Urbana-Clmmpaign, 1987.

[4] M.K. Leung, A. N. Choudhary, L H. Patel, and T. S. Huang, "Point matching in a time sequence of stereo
image pairs and its parallel implementation on a multiproeess_," in IEEE Workshop on Visual Motion,
Irvine, CA, March 1989.

[5] Alok N. Choudhary, Subhodev Das, Narendra Ahuja, and Jmffak H. Patel, "Surface reconstruction from
stereo images : an implementation on a hypercube multiprocessor," in The Fourth Conference on
Hypercubes, Concurrent Computers, and Applications, Monterey, CA, March 1989.

[6] K.S. Arun, T. S. Huang, and S. D. Blostein, "Least-sqattre fitting of two 3-D point sets," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 9, pp. 698-700, September 1987.

[7] A. Huertas and G. Medioni, "Detection of intensity changes with subpixel accuracy using Laplacian-
Gaussian masks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp.
651-664, September 1986.

[8] Y.C. Kim and J. K. Aggarwal, "Positioning 3-D objects using stereo images," Computer and Vision
Research Center, The University of Texas at Austin.




